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INTRODUCTION: The influence of El Niño on
climate is accompanied by large changes to the
carbon cycle, andElNiño–induced variability in
the carbon cycle has been attributedmainly to
the tropical continents. However, owing to a
dearth of observations in the tropics, tropi-
cal carbon fluxes are poorly quantified, and
considerable debate exists over the dominant
mechanisms (e.g., plant growth, respiration,
fire) and regions (e.g., humid versus semi-
arid tropics) on the net carbon balance.

RATIONALE: The launch of the Orbiting Car-
bon Observatory-2 (OCO-2) shortly before the
2015–2016 El Niño, the second strongest since
the 1950s, hasprovided anopportunity tounder-
stand how tropical land carbon fluxes respond
to the warm and dry climate characteristics of
ElNiño conditions. TheElNiño eventsmay also
provideanaturalexperimenttostudytheresponse
of tropical land carbon fluxes to future climate
changes, because anomalously warm and dry
tropical environments typical of El Niño are
expected to be more frequent under most
emission scenarios.

RESULTS: The tropical regions of three con-
tinents (South America, Asia, and Africa) had
heterogeneous responses to the 2015–2016
ElNiño, in terms of both climate drivers and the
carbon cycle. The annual mean precipitation
over tropical South America and tropical Asia
was lower by 3.0s and 2.8s, respectively, in 2015
relative to the 2011 LaNiña year. Tropical Africa,
on theother hand, hadnear equal precipitation
and the same number of dry months between
2015 and 2011; however, surface temperatures
were higher by 1.6s, dominated by the positive
anomaly over its eastern and southern regions.
In response to the warmer and drier climate
anomaly in 2015, the pantropical biosphere
released 2.5 ± 0.34 gigatons more carbon into
the atmosphere than in 2011, which accounts
for 83.3% of the global total 3.0–gigatons of
carbon (gigatons C) net biosphere flux differ-
ences and 92.6% of the atmospheric CO2 growth-
rate differences between 2015 and 2011. It in-
dicates that the tropical land biosphere flux
anomalywas thedriverof thehighestatmospheric
CO2 growth rate in 2015. The three tropical con-
tinentshadanapproximately evencontribution to

the pantropical net carbon flux anomaly in
2015, but had diverse dominant processes: gross
primary production (GPP) reduced carbon up-
take (0.9 ± 0.96 gigatons C) in tropical South
America, fire increased carbon release (0.4 ±
0.08 gigatons C) in tropical Asia, and respiration
increased carbon release (0.6 ± 1.01 gigatons C)
in Africa. We found that most of the excess
carbon release in 2015 was associated with
either extremely low precipitation or high tem-
peratures, or both.

CONCLUSION:Our results indicate that the
global ElNiño effect is a superposition of region-
ally specific effects. The heterogeneous climate
forcing and carbon response over the three trop-
ical continents to the 2015–2016 El Niño chal-
lenges previous studies that suggested that a
single dominant process determines carbon cycle
interannual variability, which could also be due

to previous disturbance
and soil and vegetation
structure. The similarity
between the 2015 tropical
climate anomaly and the
projected climate changes
imply that the role of the

tropical land as a buffer for fossil fuel emissions
may be reduced in the future. Theheterogeneous
response may reflect differences in temperature
and rainfall anomalies, but intrinsic differences
in vegetation species, soils, and prior disturbance
may contribute as well. A synergistic use of mul-
tiple satellite observations and a long time
series of spatially resolved fluxes derived from
sustained satellite observations will enable tests
of these hypotheses, allow for a more process-
based understanding, and, ultimately, aid im-
proved carbon-climate model projections.▪
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Diverse climate driver anomalies and carbon cycle responses to the 2015–2016 El Niño over the three tropical continents. Schematic
of climate anomaly patterns over the three tropical continents and the anomalies of the net carbon flux and its dominant constituent flux (i.e., GPP,
respiration, and fire) relative to the 2011 La Niña during the 2015–2016 El Niño. GtC, gigatons C.
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The 2015–2016 El Niño led to historically high temperatures and low precipitation over the
tropics, while the growth rate of atmospheric carbon dioxide (CO2) was the largest on
record. Here we quantify the response of tropical net biosphere exchange, gross primary
production, biomass burning, and respiration to these climate anomalies by assimilating
column CO2, solar-induced chlorophyll fluorescence, and carbon monoxide observations
from multiple satellites. Relative to the 2011 La Niña, the pantropical biosphere released
2.5 ± 0.34 gigatons more carbon into the atmosphere in 2015, consisting of approximately
even contributions from three tropical continents but dominated by diverse carbon exchange
processes. The heterogeneity of the carbon-exchange processes indicated here challenges
previous studies that suggested that a single dominant process determines carbon cycle
interannual variability.

T
he influence of an El Niño on climate is
accompanied by large changes to the car-
bon cycle. The growth rate of atmospheric
CO2 increases during El Niño years, indi-
cating reduced net CO2 uptake from the

atmosphere (1–3). The persistent response of
the carbon cycle to the El Niño provides direct
evidence of the carbon-climate feedbacks (4).
El Niño–induced variability in the carbon cycle
has been attributed mainly to the interannual
variability of land-atmosphere CO2 fluxes, most
likely in the tropics (1–3). Likewise, climate mod-
els simulate the response of tropical rainforests
to warming and drying as dominant carbon-
climate feedbacks (4–6). Owing to a dearth of
observations over the tropics (7, 8), however,
tropical carbon fluxes are poorly quantified,
and considerable debate exists over the domi-
nantmechanisms (e.g., plant growth, respiration,
fire) and regions (e.g., humid versus semiarid
tropics) on the net balance (2, 9–11). The launch
of the Orbiting Carbon Observatory-2 (OCO-2)
(12) shortly before the 2015–2016 El Niño, the
second strongest since the 1950s (www.esrl.noaa.
gov/psd/data/correlation/nina34.data), provides
an opportunity to understand how tropical land

carbon fluxes respond to the warm and dry
climate characteristics of the El Niño conditions.
The El Niño events may also provide a natural
experiment to study the response of tropical land
carbon fluxes to future climate change, because
anomalously warm and dry tropical environments
typical ofElNiñoconditionsare expected tobemore
frequent under most emission scenarios (13–15).
The 2015–2016 El Niño started at the end of

2014, peaked in late 2015, and ended inMay 2016
(fig. S1). It lasted 19 months, which is 6 months
longer than the 1997–1998 El Niño, the stron-
gest El Niño on record. Although tropical land
is generally warmer and drier during an El Niño,
the climate anomaly over the three tropical con-
tinents (i.e., tropical South America, Africa, and
Asia) was quite heterogeneous (16). In response
to the 2015–2016 El Niño event, the gross pri-
mary production (GPP)–weighted annual mean
precipitation anomalies in 2015 were 2.1s and
1.7s below the 30-year climatological mean for
tropical South America and Asia, respectively
(fig. S2). Whereas the tropical African precip-
itation anomaly was within climate variability,
theGPP-weighted annualmean surface-skin tem-
perature had an anomaly of 1.0s (fig. S2). These
anomalies have likely caused the historically high
atmospheric CO2 growth rate in 2015 (17).
Here, to study the impact of the 2015–2016

El Niño on the carbon cycle, we contrasted the
carbon flux response to that of the 2011 La Niña,
with a rationale that the flux difference between
El Niño and La Niña indicates a range of carbon
cycle responses to an El Niño–Southern Oscil-
lation (ENSO) cycle. The influence of climate

on the carbon cycle is reflected in the airborne
fraction (AF), which is the percentage of anthro-
pogenic emissions that remain in the atmosphere
(18). The average AF has been ~0.44 for decades
(19), albeit with slight trends, but varies dramat-
ically with the ENSO cycle (table S1), reflecting
the effects of climate on terrestrial and marine
carbon processes (20). During the 2011 La Niña,
only 34% of anthropogenic emissions remained
in the atmosphere (AF = 0.34), reflecting the strong
land uptake outside the tropics (21), whereas in
the El Niño year of 2015, 56% of emissions
contributed to the atmospheric increase (AF =
0.56) (19). In this study, we quantified the anom-
aly of net biosphere exchange (NBE) and its
constituent carbon fluxes, including GPP, bio-
mass burning, and respiration, by assimilating
multiple satellite observations independently
into modeling frameworks. We also analyzed
the relationship between climate driver (i.e.,
temperature and precipitation) anomalies and
the carbon flux responses over the three tropi-
cal continents. We primarily focused on the
responses in 2015, but briefly reviewed the NBE
response during the peak 2015–2016 El Niño
(May 2015 to April 2016). We found that the
increase of NBE over the tropics was the main
driver for the large atmospheric CO2 growth
rate and high AF in 2015 and that the three
tropical continents showed diverse climate-driver
anomalies and the corresponding carbon flux
responses. During the peak of the 2015–2016
El Niño, tropical South America had the largest
negative precipitation anomaly among the three
tropical continents and the largest increase of
net CO2 release into the atmosphere relative to
year 2011.

Climate-driver anomalies over tropical
land in 2015 relative to 2011

Compared to 2011, tropical Asia andmost of trop-
ical SouthAmerica experienced a negative precip-
itation anomaly that exceeded

ffiffiffiffiffiffiffiffi
2s2

p
(Fig. 1), and

the dry season (monthly precipitation less than
100 mm) was lengthened by 1 to 3 months in
2015 (Fig. 1C). In contrast with the 2005 and
2010Amazonia droughts, whichmainly occurred
over western and southern Amazonia and were
linked to the increased tropical NorthAtlantic and
central Pacific sea-surface temperature (22, 23),
the 2015 tropical South America drought was
more severe in the northern and southeastern
regions. Relative to 2011, the 2015 annual mean
precipitation over tropical South America and
tropical Asia was lower by 3.0s and 2.8s, re-
spectively (Fig. 2). Tropical Africa, on the other
hand, had near equal amounts of precipitation
and the same number of dry months between
2015 and 2011 (Fig. 1), but with surface temper-
atures higher by 1.6s (Fig. 2), dominated by the
positive anomaly over the eastern and southern
regions.

A framework to quantify NBE and its
constituent fluxes

We quantified the regional carbon cycle re-
sponses to these heterogeneous climate anomalies
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with a framework (fig. S6) that assimilated mul-
tiple satellite observations to constrain NBE
and its constituent carbon fluxes, including GPP
and biomass burning. The respiration was then
calculated as a residual term, because NBE can
be written as

NBE = respiration + fire – GPP

In the above equation, positive indicates that
carbon is being released into the atmosphere. To
constrain 2015–2016and2011NBE,weassimilated
column-averaged CO2 dry-air mole fraction (XCO2)
observations from the OCO-2 and Greenhouse
Gases Observing Satellite (GOSAT) (24) separately
into the NASA Carbon Monitoring System Flux
(CMS-Flux) inversion system (25–28). SatelliteXCO2

observations are known to be affected by biases
due to interfering atmospheric species. After bias
correction, some effects may remain (29), so we
performed a series of checks to ensure that the
results were not artifacts of sampling and system-
atic differences betweenOCO-2XCO2 andGOSAT
XCO2. Our checks included evaluation against
XCO2from the Total Carbon Column Observing
Network (TCCON) (30) (fig. S9) and CO2 obser-

vations fromaircraft and surface flasks [(28), figs.
S11 to S13]. We showed [(28), supplementary text]
that the relative differences between OCO-2XCO2

and GOSAT XCO2were negligible when both were
compared to XCO2from TCCON (fig. S9). Using Ob-
serving System Simulation Experiments (OSSEs),
which assimilated pseudo-observations that have
the same samplings and errors as real observa-
tions, we showed [(28), supplementary text] that
the posterior NBE differences resulting from the
impact of sampling and the observation-error dif-
ferences between the assimilated OCO-2 XCO2

and GOSAT XCO2were within uncertainty (fig.
S10). Because we used the same prior biosphere
fluxes and uncertainties for 2011 and 2015–2016
(28), the posterior biosphere-flux differences were
not sensitive to the prior biosphere fluxes. We
showed (28) that the posterior NBE differences
were only due to the differences in observations,
the sensitivity of the observations to surface fluxes,
and the observation error statistics.
To estimate GPP, we used a Bayesian analysis

framework that optimally accounts for uncer-
tainties in predictions of GPP from terrestrial
biosphere models, satellite observations of solar-
induced chlorophyll fluorescence (SIF) from

GOSAT, and relationships between SIF and GPP
(31, 32, 28). This GPP estimation approach has
been used to examine large-scale GPP distri-
butions and regional GPP responses to climate
variability and drought, and has been extensively
validated against flux tower data (32, 33).
The biomass burning fluxes were optimized

with CO observations from Measurements of
Pollution in the Troposphere (MOPITT) (34, 35).
The carbon fluxes from biomass burning are
then estimated as a multiplication between CO2:
CO emission ratio and the CO carbon fluxes. The
emission ratio for peat fire over Indonesia is based
on field measurements from (36). The NBE, GPP,
and biomass burning fluxes were optimized inde-
pendently. The more detailed methods are de-
scribed in (28).

Response of NBE and its constituent
fluxes over three tropical continents

We found that the higher AF in 2015 was pri-
marily due to less land carbon uptake (i.e., more
land carbon release) over the tropics. In total, the
tropics released 2.5 ± 0.34 gigatons more carbon
into the atmosphere in 2015 than in 2011 (Fig. 2).
The tropics NBE anomaly in 2015 accounts for
83.3% of the global total 3.0 gigatons of carbon
(gigatons C) NBE difference; it is equivalent to
the atmospheric CO2 growth rate difference be-
tween 2015 and 2011 (table S1). This effect was
spread over the three tropical continents with
0.9 ± 0.29, 0.8 ± 0.22, and 0.8 ± 0.28 gigatons C
over tropical South America, Africa, and Asia,
respectively. During the peak 2015–2016 El Niño
between May 2015 and April 2016, the tropics
released 3.3 ± 0.34 gigatons more carbon into
the atmosphere than in 2011 (Fig. 3), which was
even more than was released in 2015. Tropical
South America had the largest NBE anomaly
(Fig. 3), with 1.6 ± 0.29 gigatons more carbon
released into the atmosphere than in 2011, which
corresponded to a 3.7s negative precipitation
anomaly and a 2.3s positive temperature anomaly.
Even though the three tropical continents had

comparable NBE anomalies in 2015 relative to
2011, different processes dominated in each re-
gion. Increased carbon release in tropical Asiawas
dominated by biomass burning emissions as con-
strained by MOPITT CO observations (28). The
fire increase (0.4 ± 0.08 gigatons C) accounted
for about half of the NBE increase (Fig. 2). We
estimated that the biomass burning flux over
tropical Asia was 0.5 ± 0.04 gigatons C in 2015,
consistent with independent estimates ranging
from 0.34 to 0.90 gigatons C over Indonesia
(37, 38). Unlike the 1997–1998 El Niño, when
Indonesian fires dominated the pantropical land
flux anomaly (39), in 2015, Indonesian fires con-
tributed only 16% to the total tropical NBE
anomaly. NegativeGPP anomalies in tropical Asia
(0.3 ± 0.76 gigatons C) corresponding to reduced
precipitation and higher temperatures are not
statistically significant; this is a consequence of
the sparse GOSAT SIF observations over the re-
gion (fig. S9).
In tropical South America, the GPP reduction

was the dominant driver for the NBE change
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GPP–weighted precipitation difference 2015–2011 (contour);
shaded: difference larger than sqrt (2σ2) (unit:mm/day)

GPP–weighted T difference 2015–2011 (contour);
shaded: difference larger than sqrt (2σ2) (unit:K)

The number of dry month
differences between 2015 and 2011 (unit:month)

Fig. 1. Climate-driver anomaly. (A) The GPP-weighted annual mean precipitation (mm/day)
between 2015 and 2011. (B) The GPP-weighted temperature (K) difference between 2015 and 2011.
(C) The number of dry month differences between 2015 and 2011.

RESEARCH | RESEARCH ARTICLE | REMOTE SENSING
on O

ctober 12, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


(Fig. 2): GPP was reduced by 0.9 ± 0.96 gigatons
C and NBE increased by 0.9 ± 0.24 gigatons C,
mainly owing to the lower than average precip-
itation (3.8s) over the northern and southeast-
ern part of the region (Fig. 4A) (40). Over these
regions with extreme precipitation anomalies
(i.e., larger than

ffiffiffiffiffiffiffiffi
2s2

p
), the NBE increased by

1.0 ± 0.22 gigatons C and the GPP decreased by
0.7 ± 0.53 gigatons C (Fig. 4a). This implies that
the rest of tropical South America, where the
precipitationwas slightly higher in 2015, absorbed

0.1 ± 0.13 gigatons more carbon from the atmo-
sphere in 2015 than in 2011. This spatial gradient
in carbon flux response suggests that the tropical
South American carbon flux anomaly responded
directly to precipitation anomalies. Leaf- and
plot-level measurements also suggest that severe
drought in the Amazon suppresses photosynthesis
more than it suppresses respiration (41, 42). The
net carbon loss from the 2015–2016 drought over
tropical South America was even higher than
the 2010Amazonia drought,whichwas estimated

to range from 0.2 to 0.7 gigatons C relative to 2011
(27, 43–45), whereas the carbon loss from the
2005 drought was estimated to be lower than
from the 2010 drought (46).
High surface-temperature anomalies occurred

in tropical Africa in 2015 (fig. S2), increasing the
ecosystem respiration by 0.6 ± 1.01 gigatons C,
which dominated the NBE response (75% of the
0.8 ± 0.22–gigatons C NBE difference). The large
uncertainty in GPP led to the large uncertainty in
the residual respiration. About 40% of the NBE
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Fig. 2. Carbon flux, temperature, and precipitation anomalies in
2015 relative to 2011. Magenta, red, and purple bars are NBE, biomass
burning (fire), and respiration differences between 2015 and 2011.
Upward (positive) bars represent increased carbon release into the
atmosphere in 2015 relative to 2011. The green bars show the GPP
differences between 2015 and 2011. Downward (negative) bars represent
less carbon uptake through photosynthesis in 2015 relative to 2011.

The error bars are
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bars represent precipitation differences, and the downward (negative)
direction represents less precipitation in 2015 relative to 2011. The brown
bars show temperature differences, with the upward (positive) direction
representing higher temperatures in 2015 relative to 2011, where s is
30-year (1981–2010) standard deviation. GtC, gigatons C.

1.6 ± 0.29 GtC

-2.2 

2.0 1.4

0.7 ± 0.22 GtC NBE Increase in 
May 2015-April 2016 
relative to 2011 

Δ precipitation

Δtemperature

1.0 ± 0.28 GtC

-3.7 

2.3 
1.5

-0.3 -3.3 

2.5 

Fig. 3. NBE anomalies during the peak of the 2015–2016 El Niño
(from May 2015 to April 2016) relative to 2011. NBE anomalies indicated
by magenta arrows. Upward (positive) bars represent increased carbon
release into the atmosphere during the peak of the 2015–2016 El Niño relative
to 2011.The dark blue bars represent precipitation differences, and the

downward (negative) direction represents less precipitation during the peak of
the 2015–2016 El Niño relative to 2011.The brown bars show temperature
differences, with the upward (positive) direction representing higher
temperatures during the peak of the 2015–2016 El Niño relative to 2011,where
s is 30-year (1981–2010) standard deviation.
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increase (0.3 ± 0.18 gigatons C) occurred in re-
gions where temperature differences exceeded
3s (Fig. 4B). Over central tropical Africa, which
had historically nominal temperatures (Fig. 1B),
theNBE changewas close to neutral. The increase
in ecosystem respiration accompanied by high
surface temperatures is consistent with model-
ing studies that show that the variation in res-
piration over Africa was more closely related to
temperature than to precipitation (47). A lack
of ground-based observations over Africa makes
it challenging to verify such a relationship.

Implications and outlook of future
satellite CO2 observing networks

Results from our study support the assumption
in a number of studies (2, 3, 48) that the inter-
annual variability of the global carbon cycle is
dominated by the terrestrial tropics. However,
our results indicate that the global El Niño effect
is a superposition of regionally specific effects

and reveal a more complex, mechanistic picture
of the climate-carbon forcing response rela-
tionship than has been discussed to date [e.g.,
(2, 3, 11, 48)]. Cox et al. (2) related the climate-
land carbon feedback with ENSO-driven vari-
ability and proposed an emergent constraint
on global carbon-climate feedback. The heter-
ogeneous climate forcing and carbon response
over the three tropical continents to the El Niño
indicate the possibility of regionally dependent
emergent constraints on carbon-climate feed-
back factors.
The larger precipitation anomaly in tropical

South America and Asia, as compared to that in
Africa, during the 2015–2016 El Niño was a typ-
ical response pattern to eastern Pacific El Niños.
Malhi and Wright (16) analyzed the spatial var-
iability of tropical land temperature and precip-
itation response to the El Niño over a 38-year
period (1960–1998) and also found a stronger pre-
cipitation anomaly over tropical South America

and Asia. Furthermore, the precipitation anomaly
pattern over tropical South America in 2015 bears
a remarkable similarity with the projected precip-
itation change at the end of century: decreased
precipitation over the northern and southeastern
region (15, 49, 50). Like in 2015, the eastern and
southern regions of tropical Africa were projected
to have more frequent heat waves in the future
(51). The similarity between the 2015 tropical cli-
mate anomaly and the projected climate changes
in the future imply an analog between the 2015
and the future tropical carbon cycle responses.
Our study indicates that the impact of climate-
driver changes on the carbon cycle may counter-
act the CO2 fertilization effect over these regions
(10, 18), and the role of tropical land as a buffer
for fossil fuel emissions may be reduced in the
future. Indeed, some studies have shown that
tropical land has acted as an increasing CO2

source in recent decades with the increase of
temperature and drought events (52, 53). The
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large fire emissions, mainly from peat land over
tropical Asia in 2015, resulted from a combina-
tion of drought and land-use changes (39). Thus,
the future fate of carbon in those peat lands,
which store about 70 gigatons of organic carbon,
could change with both climate change and
policies of fire management and land use (54).
Most excess carbon released into the atmo-

sphere in 2015 relative to 2011 was associated
with either extremely low precipitation or high
temperatures, or both (Fig. 4). Increasing evi-
dence shows that drought events over tropical
South America (49) and extreme heat events over
parts of tropical Africa will most likely increase
in the future (51). The role of extreme climate
drivers in affecting the tropical carbon fluxes in
2015 further reinforces the importance of under-
standing the impact of these extreme events on
the carbon cycle. In addition, an improved rep-
resentation of extreme climate drivers in dynam-
ical global vegetation models, which so far have
been unable to represent short-term carbon losses
from severe drought events, (55–57), is crucial to
improving future climate projection (58–60).
The heterogeneity of the processes suggested

by our study, in which respiration, GPP, and fire
all play a role, challenges studies that suggest a
single dominant process (11). The variability we
observe within the 2015–2016 El Niño carbon
cycle responses suggests that otherElNiño events,
where the resulting patterns of temperature and
rainfall also varied (16), could result in different
carbon cycle responses.
Aside from the difference in climate drivers,

several other intrinsic differences between the con-
tinents may also contribute to the regionally de-
pendent carbon cycle response to the 2015–2016
El Niño. We hypothesize that the differences in
prior disturbance—resulting from different his-
tories of drought and land use in the three re-
gions, soil depth and texture, forest structure,
and evolutionary differences in plant function
between the continents (16, 61)—may all have
acted on the heterogeneous climate-driver anom-
alies, leading to the regionally dependent carbon
cycle response. For instance, the elevation of
tropical Africa is higher than the other two con-
tinents, and unlike Amazonia, the soil-fertility
gradient in tropical Africa does not coincide with
other gradients such as temperature (62). A
longer period of data analysis is needed to test
these different hypotheses.
Though OCO-2 and GOSAT provide unprec-

edented XCO2 and SIF observations over the
tropics, the 16-day (OCO-2) and 3-day (GOSAT)
repeat cycles limit the spatiotemporal resolu-
tion of the inferred fluxes. The future OCO-3 and
Geostationary Carbon Cycle Observatory (63)
missions will further enhance observation cov-
erage over the tropics. In addition to XCO2, new
measurements from space will help constrain
water stress, forest mortality, and plant func-
tional diversity, and aid in understanding mech-
anisms and differences between the tropical
continents. We expect that a synergistic use of
multiple satellite observations and a long time
series of spatially resolved fluxes derived from

sustained satellite observations will enable more
process-based understanding and, ultimately, im-
proved carbon-climate model projections.

Materials and methods

We quantify and attribute the NBE to constit-
uent carbon fluxes by assimilating multiple
types of satellite observations. The landbiosphere
net carbon flux NBE (Fbio)i at any grid point can
be written as

ðFbioÞi ¼ �gi þ si þ ri

where, gi, si, and ri are GPP, biomass burning,
and total ecosystem respiration at the same grid
point. In the above equation, positive means re-
leasing carbon into the atmosphere. The land net
biosphere fluxes, GPP (gi), and biomass-burning
(si) carbon fluxeswere constrainedwithXCO2 from
OCO-2 and GOSAT, SIF fromGOSAT (31), and CO
observations from MOPITT (34) separately (fig.
S6). Once these quantities are calculated, res-
piration is calculated as a residual. The error var-
iance of respiration is the sum of GPP, biomass
burning, and land biosphere flux error variance.
We use the CMS-Flux (25–27) inversion frame-

work to estimate monthly mean land and ocean
NBE fluxes assuming accurate fossil fuel emis-
sions. The CMS-Flux optimizes surface fluxes
with a 4D-Var approach with the GEOS-Chem
adjointmodel. The GEOS-Chem transport model
and its adjoint are run at 4° by 5° resolution driven
by GEOS-5 (64) (before year 2014) and GEOS-FP
meteorology (after year 2014). A Monte Carlo ap-
proach is used to estimate the uncertainties of
posterior fluxes at each grid. The regional pos-
terior flux uncertainties are the standard de-
viations of the regionally aggregated ensemble
posterior fluxes from the Monte Carlo method.
To isolate the impact of prior fluxes on the pos-
terior flux changes between years 2015–2016 and
2011, we use the same prior biosphere fluxes and
uncertainties for years 2011 and 2015–2016.
We use a Bayesian analysis framework to es-

timate monthly average GPP at 4° by 5° grid
spacing (consistent with CMS-Flux grid) that
optimally accounts for uncertainties in predic-
tions of GPP from terrestrial biosphere models,
satellite observations of GOSAT-SIF, and relation-
ships between SIF and GPP (32). GOSAT-SIF
from Level 2 product was scaled to monthly GPP
using the empirical linear relationship with Max
Planck Institute (MPI) GPP from 2009–2011 with
careful accounting for uncertainties in SIF mea-
surements and the MPI approach (32, 33). MPI
GPP is derived from a flux tower data–based up-
scaling approach using the Max Planck Insti-
tute for Biogeochemistry (MPI-BGC) model. The
posterior GPP and uncertainties are calculated
with least square linear combination of the scaled
SIF observations and the prior GPP based on their
uncertainties. This approach has been used to
examine large-scale GPP distributions and re-
gional GPP responses to climate variability and
drought, and has been extensively validated against
flux tower data (33).

The carbon fluxes from biomass burning are
estimated as a multiplication between CO2:CO
emission ratio and the CO carbon fluxes opti-
mizedwithMOPITT v6 CO observations. The CO
emission optimization follows (35), which optimize
monthly CO emissions independently with initial
conditions for eachmonth estimated from a sub-
optimal Kalman filter (65). The CO2:CO emission
ratio (rCO2 :CO) at each grid point is calculated
using CO2 and CO emission factors (eco2 , eco )
and drymassmatter (mv) for six vegetation types
used in GEOS-Chem

rCO2:CO ¼

X6
i¼1

ðeCO2 Þi �mi

X6

i¼1

ðeCOÞi �mi

where i represents vegetation types that include
agriculturewaste, deforestation, extratropical forest,
peat, savanna, and woodland. The emission ratio
for peat fire over Indonesia is based on field mea-
surement from (36). We carried out 6-year inver-
sion from 2010 to 2015. The uncertainty of the
posterior biomass fluxes is based on the Monte
Carlo method (25).
We carried out a series of validation and eval-

uation to test the robustness of the conclusion,
including comparing posterior and prior CO2 con-
centration from flux inversion against independent
aircraft and surface flask observations (66), com-
paring OCO-2 and GOSAT observations to XCO2

from the TCCON (30, 67–81), and estimating the
impact of GOSAT and OCO-2 sampling differences
on posterior fluxes with OSSEs. The comparison
to independent data shows that the OCO-2 and
GOSATXCO2 have consistent error statistics, and
the OSSEs indicate that the conclusions from
this study are not sensitive to the sampling dif-
ferences between OCO-2 and GOSAT.
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